Find an equation for the parabola in the form $y=x^2+ax+b$ that contains the points (-1, 11) and (3, 7).

- The points (-1, 11) and (3, 7) must satisfy the equation $y = x^2 + ax + b$.
- Substituting these points into the equation, we obtain

$$11 = 1 - a + b$$
 , $-a + b = 10$ and

$$7 = 9 + 3a + b$$
 , $3a + b = -2$

- We now solve the system $\begin{array}{ll}
 -a+b=10 \\
 3a+b=-2
 \end{array}$ for a and b.
- Now $-a+b=10 \\ 3a+b=-2$ $\Rightarrow a-b=-10 \\ 3a+b=-2$ $\Rightarrow 4a=-12$, a=-3 , b=7
- The equation of the parabola is $y=x^2-3x+7$.

$$x+3y+z=12$$

 $-x+4y-z=9$
 $2x+3y+z=10$

• The matrix corresponding to this system of equations is $\begin{bmatrix} 1 & 3 & 1 & 12 \\ -1 & 4 & -1 & 9 \\ 2 & 3 & 1 & 10 \end{bmatrix}$

$$x+3y+z=12$$

 $-x+4y-z=9$
 $2x+3y+z=10$

• The matrix corresponding to this system of equations is $\begin{bmatrix} 1 & 3 & 1 & 12 \\ -1 & 4 & -1 & 9 \\ 2 & 3 & 1 & 10 \end{bmatrix}$

$$\bullet \quad R_1 + R_2 \to R_2 \qquad \left[\begin{array}{ccccc} 1 & 3 & 1 & 12 \\ 0 & 7 & 0 & 21 \\ 2 & 3 & 1 & 10 \end{array} \right]$$

$$x+3y+z=12$$

 $-x+4y-z=9$
 $2x+3y+z=10$

• The matrix corresponding to this system of equations is $\begin{bmatrix} 1 & 3 & 1 & 12 \\ -1 & 4 & -1 & 9 \\ 2 & 3 & 1 & 10 \end{bmatrix}$

•
$$R_1 + R_2 \rightarrow R_2$$
 $\begin{bmatrix} 1 & 3 & 1 & 12 \\ 0 & 7 & 0 & 21 \\ 2 & 3 & 1 & 10 \end{bmatrix}$ $-2R_1 + R_3 \rightarrow R_3$: $\begin{bmatrix} 1 & 3 & 1 & 12 \\ 0 & 7 & 0 & 21 \\ 0 & -3 & -1 & -14 \end{bmatrix}$

$$x+3y+z=12$$

 $-x+4y-z=9$
 $2x+3y+z=10$

• The matrix corresponding to this system of equations is $\begin{vmatrix} 1 & 3 & 1 & 12 \\ -1 & 4 & -1 & 9 \\ 2 & 3 & 1 & 10 \end{vmatrix}$

$$\bullet \quad R_1 + R_2 \to R_2 \quad \begin{bmatrix} 1 & 3 & 1 & 12 \\ 0 & 7 & 0 & 21 \\ 2 & 3 & 1 & 10 \end{bmatrix} \quad -2R_1 + R_3 \to R_3 : \quad \begin{bmatrix} 1 & 3 & 1 & 12 \\ 0 & 7 & 0 & 21 \\ 0 & -3 & -1 & -14 \end{bmatrix}$$

$$x+3y+z=12$$

 $-x+4y-z=9$
 $2x+3y+z=10$

• The matrix corresponding to this system of equations is $\begin{vmatrix} 1 & 3 & 1 & 12 \\ -1 & 4 & -1 & 9 \\ 2 & 3 & 1 & 10 \end{vmatrix}$

$$\bullet \quad R_1 + R_2 \to R_2 \quad \begin{bmatrix} 1 & 3 & 1 & 12 \\ 0 & 7 & 0 & 21 \\ 2 & 3 & 1 & 10 \end{bmatrix} \qquad -2R_1 + R_3 \to R_3 : \quad \begin{bmatrix} 1 & 3 & 1 & 12 \\ 0 & 7 & 0 & 21 \\ 0 & -3 & -1 & -14 \end{bmatrix}$$

$$x+3y+z=12$$

 $-x+4y-z=9$
 $2x+3y+z=10$

The matrix corresponding to this system of equations is $\begin{vmatrix} 1 & 3 & 1 & 12 \\ -1 & 4 & -1 & 9 \\ 2 & 3 & 1 & 10 \end{vmatrix}$

$$\bullet \quad R_1 + R_2 \to R_2 \quad \begin{bmatrix} 1 & 3 & 1 & 12 \\ 0 & 7 & 0 & 21 \\ 2 & 3 & 1 & 10 \end{bmatrix} \qquad -2R_1 + R_3 \to R_3 : \quad \begin{bmatrix} 1 & 3 & 1 & 12 \\ 0 & 7 & 0 & 21 \\ 0 & -3 & -1 & -14 \end{bmatrix}$$

$$x+3y+z=12$$

 $-x+4y-z=9$
 $2x+3y+z=10$

• The matrix corresponding to this system of equations is $\begin{vmatrix} 1 & 3 & 1 & 12 \\ -1 & 4 & -1 & 9 \\ 2 & 3 & 1 & 10 \end{vmatrix}$

$$\bullet \quad R_1 + R_2 \to R_2 \quad \begin{bmatrix} 1 & 3 & 1 & 12 \\ 0 & 7 & 0 & 21 \\ 2 & 3 & 1 & 10 \end{bmatrix} \quad -2R_1 + R_3 \to R_3 : \quad \begin{bmatrix} 1 & 3 & 1 & 12 \\ 0 & 7 & 0 & 21 \\ 0 & -3 & -1 & -14 \end{bmatrix}$$

• Using backward substitution z=5, y=3, x+3y+z=12, x+3(3)+5=12, and x=-2.